ΔF508 CFTR Surface Stability Is Regulated by DAB2 and CHIP-Mediated Ubiquitination in Post-Endocytic Compartments
نویسندگان
چکیده
The ΔF508 mutant form of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR) that is normally degraded by the ER-associated degradative pathway can be rescued to the cell surface through low-temperature (27°C) culture or small molecular corrector treatment. However, it is unstable on the cell surface, and rapidly internalized and targeted to the lysosomal compartment for degradation. To understand the mechanism of this rapid turnover, we examined the role of two adaptor complexes (AP-2 and Dab2) and three E3 ubiquitin ligases (c-Cbl, CHIP, and Nedd4-2) on low-temperature rescued ΔF508 CFTR endocytosis and degradation in human airway epithelial cells. Our results demonstrate that siRNA depletion of either AP-2 or Dab2 inhibits ΔF508 CFTR endocytosis by 69% and 83%, respectively. AP-2 or Dab2 depletion also increases the rescued protein half-life of ΔF508 CFTR by ~18% and ~91%, respectively. In contrast, the depletion of each of the E3 ligases had no effect on ΔF508 CFTR endocytosis, whereas CHIP depletion significantly increased the surface half-life of ΔF508 CFTR. To determine where and when the ubiquitination occurs during ΔF508 CFTR turnover, we monitored the ubiquitination of rescued ΔF508 CFTR during the time course of CFTR endocytosis. Our results indicate that ubiquitination of the surface pool of ΔF508 CFTR begins to increase 15 min after internalization, suggesting that CFTR is ubiquitinated in a post-endocytic compartment. This post-endocytic ubiquination of ΔF508 CFTR could be blocked by either inhibiting endocytosis, by siRNA knockdown of CHIP, or by treating cells with the CFTR corrector, VX-809. Our results indicate that the post-endocytic ubiquitination of CFTR by CHIP is a critical step in the peripheral quality control of cell surface ΔF508 CFTR.
منابع مشابه
Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator.
CFTR (cystic fibrosis transmembrane conductance regulator) is expressed in the apical membrane of epithelial cells. Cell-surface CFTR levels are regulated by endocytosis and recycling. A number of adaptor proteins including AP-2 (μ2 subunit) and Dab2 (Disabled-2) have been proposed to modulate CFTR internalization. In the present study we have used siRNA (small interfering RNA)-mediated silenci...
متن کاملN-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic
N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a pol...
متن کاملTissue-specific control of CFTR endocytosis by Dab2
Clathrin-mediated endocytosis dynamically regulates cell membrane abundance of CFTR and plays an essential role in CFTR-dependent Cl(-) conductance in fluid-transporting epithelia. It requires two closely related, but distinct processes: assembly of the clathrin coat and recruitment of cargo proteins for endocytosis. The assembly polypeptide-2 complex (AP-2) is the prototypical endocytic adapto...
متن کاملMisfolding diverts CFTR from recycling to degradation
To investigate the degradation mechanism of misfolded membrane proteins from the cell surface, we used mutant cystic fibrosis transmembrane conductance regulators (CFTRs) exhibiting conformational defects in post-Golgi compartments. Here, we show that the folding state of CFTR determines the post-endocytic trafficking of the channel. Although native CFTR recycled from early endosomes back to th...
متن کاملStabilizing Rescued Surface-Localized ΔF508 CFTR by Potentiation of Its Interaction with Na+/H+ Exchanger Regulatory Factor 1
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in CFTR, a plasma-membrane-localized anion channel. The most common mutation in CFTR, deletion of phenylalanine at residue 508 (ΔF508), causes misfolding of CFTR resulting in little or no protein at the plasma membrane. The CFTR corrector VX-809 shows promise for treating CF patients homozygous for ΔF508. Here, we demonstra...
متن کامل